Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction-diffusion model
نویسندگان
چکیده
The Fisher-Rao metric from Information Geometry is related to phase transition phenomena in classical statistical mechanics. Several studies propose to extend the use of Information Geometry to study more general phase transitions in complex systems. However, it is unclear whether the Fisher-Rao metric does indeed detect these more general transitions, especially in the absence of a statistical model. In this paper we study the transitions between patterns in the Gray-Scott reactiondiffusion model using Fisher information. We describe the system by a probability density function that represents the size distribution of blobs in the patterns and compute its Fisher information with respect to changing the two rate parameters of the underlying model. We estimate the distribution non-parametrically so that we do not assume any statistical model. The resulting Fisher map can be interpreted as a phase-map of the different patterns. Lines with high Fisher information can be considered as boundaries between regions of parameter space where patterns with similar characteristics appear. These lines of high Fisher information can be interpreted as phase transitions between complex patterns.
منابع مشابه
SPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL
In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...
متن کاملDynamic transitions through scattors in dissipative systems.
Scattering of particle-like patterns in dissipative systems is studied, especially we focus on the issue how the input-output relation is controlled at a head-on collision where traveling pulses or spots interact strongly. It remains an open problem due to the large deformation of patterns at a colliding point. We found that a special type of unstable steady or time-periodic solutions called sc...
متن کاملCellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches
The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...
متن کاملInvestigation of thermal behavior of traditional geometric patterns (khavoon chini) in the external hollow walls of Dezful double-walled walls in order to revive cultural identity
Abstract Traditional geometric patterns in architecture and decoration are rooted in the cultural identity of each region and in cities such as Dezful, they display its special cultural and identity characteristics. In Dezful, the geometric patterns of the bricks, known as the khavoon chini are one of the hallmarks of the citychr('39')s cultural identity. Due to the hot climate of Dezful, the ...
متن کاملLattice Boltzmann study of pattern formation in reaction-diffusion systems.
Pattern formation in reaction-diffusion systems is of great importance in surface micropatterning [Grzybowski et al., Soft Matter 1, 114 (2005)], self-organization of cellular micro-organisms [Schulz et al., Annu. Rev. Microbiol. 55, 105 (2001)], and in developmental biology [Barkai et al., FEBS Journal 276, 1196 (2009)]. In this work, we apply the lattice Boltzmann method to study pattern form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.02077 شماره
صفحات -
تاریخ انتشار 2015